Sains Malaysiana 53(7)(2024): 1575-1587

http://doi.org/10.17576/jsm-2024-5307-08

 

Rice Response to Spermine Foliar Application and Its Association with Aerial Imagery Monitoring Under Water Stress Conditions

(Tindak Balas Padi terhadap Pengaplikasian Foliar Spermin Daun dan Kaitannya dengan Pemantauan Imej Udara dalam Keadaan Tekanan Air)

 

NUR ZAHIRAH ABD. JALIL1, ZULKARAMI BERAHIM1,*, NURUL-IDAYU ZAKARIA1, MOHAMAD HUSNI OMAR1, RHUSHALSHAFIRA ROSLE2, MOHD RAZI ISMAIL3, NIK NORASMA CHE´YA2, ANAS ABDUL LATIFF4, WAN FAZILAH FAZLIL ILAHI2 & LOLA GANDJAEVA5

 

1Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

2Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

3Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

4Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia

5Khorezm Mamun Academy, Urgench State University, Markaz-1, Khiva City, KhorezmRegion, 220900, Uzbekistan

 

Diserahkan: 4 Julai 2023/Diterima: 29 Mei 2024

 

Abstract

Rice is the most consumed food in the world, mainly in Asia and Africa. Malaysia is the second-largest rice importer in Southeast Asia after Indonesia. However, rice yield is limited by water stress. One alternative for a quicker strategy to mitigate water stress is through a combination of foliar spermine application and efficient rice management practices via image monitoring techniques using drone technology. The present study was aimed at evaluating the effects of spermine on rice physiological response and its association with aerial imagery and yield under reproductive during reproductive stage under water stress. The experiment was carried out under greenhouse conditions using a two-factorial randomized complete block design (RCBD), with foliar spermine treatment as the first factor and water stress as the second factor. Physiological parameters showed significantly higher tiller number per pot and photosynthesis rate by 29% and 31%, respectively. Correspondingly, the Normalised Difference Vegetation Index (NDVI) using aerial imagery monitoring showed an increased value in spermine treatments by 2% compared to control. Furthermore, NDVI readings and photosynthetic rate were positively correlated linearly with R2= 0.51. Interestingly, spermine treatments alleviated water stress effects by 40%, 17% and 12% in grain weight per pot, grain number per panicle and percentage filled grain. Biomass partitioning in roots improved by 44% in spermine treatments, even under water stress, due to an efficient translocation of assimilates. In conclusion, spermine foliar application significantly improved growth, grain filling and rice yield production, which was also supported by NDVI values using aerial imagery monitoring.

 

Keywords: Normalised Difference Vegetation Index (NDVI); rice; spermine; Unmanned Aerial Vehicle (UAV); water stress

 

Abstrak

Nasi adalah makanan utama di seluruh dunia, terutamanya di Asia dan Afrika. Malaysia merupakan pengimport beras kedua terbesar di Asia Tenggara selepas Indonesia. Walau bagaimanapun, penghasilan padi dihadkan oleh tekanan air. Antara alternatif untuk strategi yang lebih cepat bagi mengurangkan tekanan air adalah melaluigabungan semburan foliar spermina dan amalan pengurusan padi yang cekap dengan kaedah teknik pemantauan imej menggunakan teknologi dron. Penyelidikan ini bertujuan untuk menilai kesan spermina terhadap gerak balas fisiologi padi dan perkaitannya dengan imej udara dan hasil di bawah tekanan air pada peringkat pembiakan. Uji kaji ini telah dijalankan di rumah hijau dengan menggunakan dua faktor dalam Reka Bentuk Blok Lengkap Secara Rawak (RCBD) dengan rawatan foliar spermina sebagai faktor pertama dan tekanan air sebagai faktor kedua. Parameter fisiologi menunjukkan bilangan tiler di setiap pasu dan kadar fotosintesis yang lebih tinggi masing-masing sebanyak 29% dan 31%. Sejajar dengan itu, Indeks Kenormalan Perbezaan Tumbuhan (NDVI) menggunakan pemantauan imej udara menunjukkan peningkatan nilai dalam rawatan spermina sebanyak 2% berbanding kawalan. Tambahan pula, bacaan NDVI dan kadar fotosintesis berkolerasi positif secara linear dengan R2=0.51. Menariknya, rawatan foliar spermina mengurangkan tekanan air sebanyak 40%, 17% dan 12% dalam berat bijisetiap pasu, bilangan biji setiap tangkai dan peratusan biji yang berisi. Pemetakan biojisim dalam akar bertambah sebanyak 44% dalam rawatan foliar spermina disebabkan oleh translokasi asimilasi yang cekap walaupun di bawah tekanan air. Kesimpulannya, semburan foliar spermina telah meningkatkan pertumbuhan, pengisian biji dan pengeluaran hasil padi yang ketara seperti yang disokong oleh nilai NDVI yang menggunakan pemantauan imej dari udara.

 

Kata kunci: Indeks Kenormalan Perbezaan Tumbuhan (NDVI); Kenderaan Udara Tanpa Pemandu (UAV); padi; spermina; tekanan air

 

RUJUKAN

Asli, D.E. & Houshmandfar, A. 2011. An anatomical study of vascular system of spikelet supplying translocates to differentially growing grains of wheat. Advance Environmental Biology 5: 1597-1601.

Berahim, Z., Dorairaj, D., Omar, M.H., Saud, H.M. & Ismail, M.R. 2021. Spermine mediated improvements on stomatal features, growth, grain filling and yield of rice under differing water availability. Scientific Reports 11: 10669.

Berahim, Z., Dorairaj, D., Saud, H.M. & Ismail, M.R. 2019. Regulation of sucrose synthase and its association with grain filling in spermine-treated rice plant under water            deficit. Journal of Plant Interactions 14(1): 464-473.

Bray, R.H. & Kurtz, L.T. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Science 59: 39-45.

Capell, T., Bassie, L. & Christou, P. 2004. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proceedings of the National Academy of Sciences 101(26): 9909-9914.

Chang, J., Li, X., Fu, W., Wang, J., Yong, Y., Shi, H., Ding, Z., Kui, H., Gou, X., He, K. & Li, J. 2019. Asymmetric distribution of cytokinins determines root hydrotropism in Arabidopsis thaliana. Cell Research 29(12): 984-993.

Chowdhury, M.R., Kumar, V., Sattar, A. & Brahmachari, K. 2014. Studies on the water use efficiency and nutrient uptake by rice under system of intensification. The Bioscan 9(1): 85-88.

Cristiano, P.M., Madanes, N., Campanello, P.I., di Francescantonio, D., Rodríguez, S.A., Zhang, Y.J., Carrasco, L.O. & Goldstein, G. 2014. High NDVI and potential canopy photosynthesis of South American subtropical forests despite seasonal changes in leaf area index and air temperature. Forests 5(2): 287-308.

da Silva, E.E., Baio, F.H.R., Teodoro, L.P.R., da Silva Junior, C.A., Borges, R.S. & Teodoro, P.E. 2020. UAV-multispectral and vegetation indices in soybean grain yield prediction based on in situ observation. Remote Sensing Applications: Society and Environment 18: 100318.

Dai, L., Li, J., Harmens, H., Zheng, X. & Zhang, C. 2020. Melatonin enhances drought resistance by regulating leaf stomatal behavior, root growth and catalase activity in two contrasting rapeseed (Brassica napus L.) genotypes. Plant Physiology and Biochemistry 149: 86-95.

Elshikha, D.E.M., Hunsaker, D.J., Waller, P.M., Thorp, K.R., Dierig, D., Wang, G., Cruz, V.M.V., Katterman, M.E., Bronson, K.F., Gerard, W., Wall, G.W. & Thompson, A.L. 2022. Estimation of direct-seeded guayule cover, crop coefficient, and yield using UAS-based multispectral and RGB data. Agricultural Water Management 265: 107540. https://doi.org/10.1016/j.agwat.2022.107540

Farooq, M., Wahid, A. & Lee, D-J. 2009. Exogenously applied polyamines increased drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiologiae Plantarum31: 937-945.

Fen, L.L., Ismail, M.R., Zulkarami, B., Abdul Rahman, S. & Islam, M.R. 2015. Physiological and molecular characterization of drought responses and screening of drought tolerant rice varieties. Bioscience Journal 31(3): 709-718.

Gee, G.W. & Bauder, J.W. 1986. Particle size analysis. In Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods. 2nd ed., edited by Klute, A. Madison: American Society of Agronomy. pp. 383-411.

He, J., Jin, Y., Turner, N.C. & Li, F.M. 2020. Irrigation during flowering improves subsoil water uptake and grain yield in rainfed soybean. Agronomy 10(1): 120.

Hubbart, S., Bird, S., Lake, J.A. & Murchie, E.H. 2013. Does growth under elevated CO2 moderate photoacclimation in rice. Physiologiae Plantarum148(2): 297-306.

Hussain, S.S., Ali, M., Ahmad, M. & Siddique, K.H. 2011. Polyamines: Natural and engineered abiotic and biotic stress tolerance in plants. Biotechnology Advances 29(3): 300-311.

Jonas, M., Salas, P. & Baltazar, T. 2012. Effect of exogenously application selected phytohormonal substances on the physiological and morphological indicators of Philadelphus x hybrod in containers. Acta Universitatis Agricultirae et Silviculturae Mendelianae Brunensis 60(8): 109-118.

Lemoine, R., Camera, S.L., Atanassova, R., Dédaldéchamp, F., Allario, T., Pourtau, N., Bonnemain, J.L., Laloi, M., Coutos-Thévenot, P., Maurousset, L. & Faucher, M. 2013. Source to sink transport of sugar and regulation by environmental factors. Frontiers Plant Science 4: 272.

Lima, I.P., Lafarge, T., Castro, A.P., Roques, S., Sontiras, A., Cl´ement-Vidal, A., Botellho, F.B.S. & Raïssac, M. 2021. How much the response of rice genotypes to water deficit at the reproductive phase is dependent from environmental conditions? Biorxiv 458547. https://doi.org/10.1101/2021.09.01.458547

Metson, A.J. 1956. Methods of chemical analysis for soil survey samples. New Zealand Soil Bureau Bulletin 12. p. 208.

Muraoka, H., Noda, H.M., Nagai, S., Motohka, T., Saitoh, T.M., Nasahara, K.N. & Saigusa, N. 2013. Spectral vegetation indices as the indicator of canopy photosynthetic productivity in a deciduous broadleaf forest. Journal of Plant Ecology 6(5): 393-407.

Pacheco, J., Plazas, M., Pettinari, I., Landa-Faz, A., Gonzalez-Orenga, S., Boscaiu, M., Soler, S., Prohens, J., Vicente, O. & Gramazio, P. 2021. Moderate and severe water stress effects on morphological and biochemical traits in a set of pepino (Solanum muricatum) cultivars. Scientia Horticulturae284: 110143.

Paparella, S., Araújo, S.S., Rossi, G., Wijayasinghe, M., Carbonera, D. & Balestrazzi, A. 2015. Seed priming: State of the art and new perspectives. Plant Cell Reports 34: 1281-1293.

Razi, K. & Muneer, S. 2021. Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Critical Reviews in Biotechnology 41: 669-691.

Sekhar, S., Panda, B.B., Mohapatra, T., Das, K., Shaw, B.P., Kariali, E. & Mohapatra, P.K. 2015. Spikelet-specific variation in ethylene production and constitutive expression of ethylene receptors and signal transducers during grain filling of compact and lax-panicle rice (Oryza sativa) cultivars. Journal of Plant Physiology 179: 21-34.

Wu, W. & Cheng, S. 2014. Root genetic research, an opportunity and challenge to rice improvement. Field Crops Research 165: 111-124.

Ya, N.N.C., Lee, L.S., Ismail, M.R., Razali, S.M., Roslin, N.A. & Omar, M.H. 2019. Development of rice growth map using the advanced remote sensing techniques. 2019 International Conference on Computer and Drone Applications (IConDA). Institute of Electrical and Electronics Engineers (IEEE). pp. 23-28.

Zain, N.A.M. & Ismail, M.R. 2016. Effects of potassium rates and types on growth, leaf gas exchange and biochemical changes in rice (Oryza sativa) planted under cyclic water stress. Agricultural Water Management 164: 83-90.

Zain, N.A.M., Ismail, M.R., Mahmood, M., Puteh, A. & Ibrahim, M.H. 2014. Alleviation of water stress effects on MR220 rice by application of periodical water stress and potassium fertilization. Molecules 19(2): 1795-1819.

Zhang, H., Zhang, S., Zhang, J., Yang, J. & Wang, Z. 2008. Post-anthesis moderate wetting drying improves both quality and quantity of rice yield. Agronomy Journal 100(3): 726-734.

Zhang, J., Qiu, X., Wu, Y., Zhu, Y., Cao, Q., Liu, X. & Cao, W. 2021. Combining texture, color, and vegetation indices from fixed-wing UAS imagery to estimate wheat growth parameters using multivariate regression methods. Computers and Electronics in Agriculture 185: 106-138.

Zhang, N., Su, X., Zhang, X., Yao, X., Cheng, T., Zhu, Y., Cao, W. & Tian, Y. 2020.  Monitoring daily variation of leaf layer photosynthesis in rice using UAV based multispectral imagery and a light response curve model. Agricultural and Forest Meteorology 291: 108098.

Zhang, Y., Zhao, X., Liu, F., Zhu, L. & Yu, H. 2023. Effect of different water stress on growth index and yield of semi-late rice. Environmental Sciences Proceedings 25: 84. https://doi.org/10.3390/ECWS-7-14318

Zulkafli, Z., Muharam, F.M., Raffar, N., Jajarmizadeh, A., Abdi, M.J., Rehan, B.M. & Khairudin, N. 2021. Contrasting influences of seasonal and intra-seasonal hydroclimatic variabilities on the irrigated rice paddies of northern Peninsular Malaysia for weather index insurance design. Sustainability 13(9): 5207.

 

*Pengarang untuk surat-menyurat; email: zulkerami@upm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya